

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет» (ФГБОУ ВО «ТГТУ») 392000, Тамбов, Советская, 106/5, помещение 2

Лицензия на осуществление образовательной деятельности бессрочная выдана Федеральной службой по надзору в сфере образования и науки 21.06.2022 за № Л035-00115-77/00613649 Телефон (4752) 63-10-19 Факс (4752) 63-06-43 Е-mail: tstu@tstu.ru ОГРН 1026801156557 ИНН 6831006362, ОКПО 02069289

No	0	1.01	 17/	220/2	
<u>«</u>	21	>>>	 11	202	5 г.
Ha	No .		 		
((>>		202	Γ.

УТВЕРЖДАЮ Проректор по научной работе д.т.н., профессор Д.Ю. Муромцев

«21» 11 2025 г.

ОТЗЫВ

ведущей организации — ФГБОУ ВО «Тамбовский государственный технический университет» — на диссертационную работу Демушкиной К.М. «Методики и алгоритмы обработки цифровых данных электрокардиографии и биоимпедансометрии для систем поддержки принятия решений», представленную на соискание ученой степени кандидата технических наук по специальности 2.3.1. «Системный анализ, управление и обработка информации, статистика» (технические науки)

Актуальность темы диссертации

Системы поддержки принятия решений играют важную роль в различных сферах, в том числе в медицинской. Их совершенствование идет постоянно за счет внедрения новых методик, алгоритмов и технологий обработки информации. Технология анализа процессов (Process Mining) в настоящее время является актуальным инструментом для анализа различных систем, относящихся к разным предметным областям. Данная технология позволяет отслеживать и анализировать события исследуемых процессов, а также строить прогнозы.

Технология анализа процессов за счет своих инструментов позволяет визуализировать события и извлекать полезную информацию, необходимую для решения практических задач. Визуализация обеспечивает интерпретируемость процесс анализа и делает более доступным анализ параметров. Применение технологии анализа процессов анализа биомедицинских данных может стать для эффективным инструментом соответствующих систем поддержки принятия врачебных решений. В связи с этим работа Демушкиной К.М., посвященная разработке методик и алгоритмов анализа цифровых данных электрокардиографии и биоимпедансометрии, является актуальной, как с точки зрения развития инструментов анализа информации, так и с точки зрения выбранной области приложения – разработки конкретных методик, алгоритмов и программных средств для мультимодальных систем поддержки принятия решений, которые могут применяться для анализа информации при оценке состояния сердечно-сосудистой системы и обнаружении новообразований.

Тема диссертации и используемые в ней методы исследования соответствуют паспорту заявленной специальности: п. 2 «Формализация и постановка задач системного анализа, оптимизации, управления, принятия решений и обработки информации», п. 4 «Разработка методов и алгоритмов решения задач системного анализа, оптимизации, управления, принятия решений, обработки информации и искусственного интеллекта», пункту 12 «Визуализация, трансформация и анализ информации на основе компьютерных методов обработки информации».

Структура и общая характеристика содержания диссертации

Диссертация Демушкиной К.М. включает введение, четыре главы, заключение, библиографический список, включающий 142 наименования, 2 приложения. Общий объем работы составляет 152 страницы машинописного текста, а также 9 страниц приложений.

Во введении приведено обоснование актуальности рассматриваемой проблемы, определены цель и задачи исследования, описана практическая значимость диссертационной работы, перечислены основные положения, выносимые на защиту.

В первой главе рассматриваются основные методы и алгоритмы обработки цифровых данных электрокардиографии и биоимедансометрии для поддержки принятия решений. Рассмотрены методы проектирования систем поддержки принятия решений. Определены современные тенденции в развитии систем поддержки принятия решений. Проведен анализ существующих методик и алгоритмов анализа цифровых данных электрокардиографии и биоимпедансометрии, выделены их достоинства и недостатки. На основе проведенного анализа сформулированы задачи исследования.

Во второй главе рассматривается методика анализа цифровых данных электрокардиографии с помощью технологии анализа процессов. Для реализации методики был модифицирован алгоритм определения R-пика Пана-Томпкинса, разработан алгоритм трансформации данных электрокардиографии в журнал событий для последующего анализа инструментами технологии анализа процессов.

В третьей главе предложена методика анализа цифровых данных биоимпедансометрии для систем поддержки принятия решений. Автором предлагается использовать статистические параметры и метрику Хаусдорфа для оценки различий кривых амплитудно-частотных характеристик результатов биомедансометрии

исследуемых объектов. Оценка различий кривых АЧХ основана на оценке агрегированного значения статистических параметров и метрики Хаусдорфа. Полученные таким образом оценки далее анализируются с помощью технологии анализа процессов.

В четвертой главе представлена программная реализация разработанных алгоритмов и методик, схема их взаимодействия в рамках мультимодельной системы поддержки принятия решений. Соискателем реализован модифицированный алгоритм Пана-Томпкинса для определения R-пиков, алгоритм трансформации цифровых данных электрокардиографии в журнал событий, алгоритм обработки цифровых данных биоимпедансометрии. Для подтверждения работоспособности и эффективности разработанных алгоритмов работы с кардиографической информацией использованы открытые баз данных сигналов Physionet.

Заключение содержит формулировки основных результатов и выводов, отражающих достижение поставленной цели и решения задач диссертационного исследования.

В приложениях к диссертации представлены свидетельства о государственной регистрации программ для ЭВМ, документы об использовании результатов диссертационной работы.

Автореферат в достаточной мере отражает структуру, научные результаты и выводы диссертации.

Научная новизна

Научная работа соответствует пунктам 2, 4, 12 паспорта специальности 2.3.1. «Системный анализ, управление и обработка информации, статистика» (технические науки) и представлена следующими новыми результатами.

Автором впервые предложена методика анализа цифровых данных электрокардиографии с помощью технологии анализа процессов, что позволяет повысить интерпретируемость процесса анализа и представлять пользователю этапы поиска решения.

Автором разработан модифицированный алгоритм поиска R-пиков на основе алгоритма Пана-Томпкинса. Научная новизна состоит в адаптивном определении границ QRS-комплекса, что позволяет повысить точность определения пика на 2% для данных всех отведений ЭКГ.

Автором разработан алгоритм трансформации цифровых данных электрокардиографии в журнал событий. Научная новизна заключается в представлении данных в новом виде, в виде журнала событий, что позволит анализировать цифровые данные электрокардиографии инструментами технологии анализа процессов для обеспечения повышения интерпретируемости процесса принятия решений.

Автором предложена методика анализа цифровых данных биоимпедансометрии. Научная новизна состоит в применении комплексной оценки статистических параметров и метрики Хаусдорфа для ранжирования объектов по степени включения неоднородности, что даст возможность расширения практического применения метода биоимпедансометрии в системах обнаружения новообразований.

Теоретическая значимость диссертации

Теоретическая значимость результатов диссертации заключается в применении технологии анализа процессов для анализа цифровых данных электрокардиографии и биоимпедансометрии с целью совершенствования систем поддержки принятия решений, включая разработку методик анализа цифровых данных электрокардиографии и биоимедансометрии с помощью технологии анализа процессов, модификации алгоритма Пана-Томпкинса для определения R-пика ЭКГ, разработке алгоритма трансформации электрокардиографии в журнал событий.

Практическая значимость работы

Практическая значимость работы подтверждается внедрением в учебный процесс ФГБОУ ВО «Пензенский государственный университет», ФГБОУ ВО «Самарский государственный университет Минздрава России», в разработки АО «НПП «Рубин», ООО «Максофт».

Результаты исследований Демушкиной К.М. использованы при выполнении государственного задания Министерства науки и высшего образования Российской Федерации «Разработка технологии раннего обнаружения новообразований молочной железы на основе методов микроволновой томографии и биоимпедансной спектроскопии» (рег. № 124020200015-7).

Практическая реализация разработанных методик и алгоритмов в виде компьютерных программ подтверждается 3 свидетельствами о государственной регистрации программ для ЭВМ.

Полученные автором результаты могут быть использованы на предприятиях и в организациях, деятельность которых связана с разработкой и применением систем поддержки принятия решений в медицинской сфере, а промышленными предприятиями, ориентированными на разработку оборудования и цифровых решений для области медицины.

Достоверность результатов работы

Достоверность результатов работы подтверждается корректным применением математического аппарата, средств и инструментов технологии анализа процессов, статистического анализа, методов цифровой обработки сигналов. Результаты диссертационной работы опубликованы в рецензируемых научных изданиях, в том числе: 5 статей в журналах, рекомендованных ВАК РФ по научной специальности 2.3.1, 2 статьи в изданиях, индексируемых в международной базе Scopus. Результаты исследований апробированы на всероссийских и международных конференциях.

Основные научные результаты диссертационной работы получены автором самостоятельно. В работах, выполненных в соавторстве, соискателю принадлежит решающий вклад в полученные результаты.

Замечания по диссертационной работе

По диссертации соискателя имеются следующие замечания:

- 1. В описании методики анализа цифровых данных электрокардиографии с помощью технологии анализа процессов не указано, что представляет собой контрольная модель, каким образом она получается и какие критерии предъявляются для этой модели.
- 2. В формулах (2.1)-(2.3), представленных в диссертации, не расшифрованы коэффициенты и не обоснована их необходимость при расчете границ R-пика.
- 3. Во второй главе подробно рассматривается алгоритм определения пиков на цифровых данных электрокардиографии, что по всей видимости является частью алгоритма трансформации данных в журнал событии, но это явным образом не указано в тексте.
- 4. На рисунке 2.31, стр. 69 диссертации, представлена эталонная модель ЭКГ, которая получается за счет конвертирования ЭКГ здорового человека. В данном случае не ясно, как эталонная модель может стать основной для сравнительного анализа разных по медицинским показаниям людей, учитываются ли в эталонной модели возрастные нормы и др. критерии.
- 5. В результатах главы 2 отмечается, что Плагин Multi perspective Process Explorer позволяет провести анализ данных ЭКГ как в целом, так и каждого кардиоцикла в отдельности. Из текста работы не понятно, в каких случаях какой тип анализа следует использовать.
- 6. В главе 2 рассматривается применение технологии анализа процессов для анализа цифровых данных электрокардиографии, а в главе 3 рассматривается анализ биоимпедансометрии. При этом не показывается, как эти два вида анализа взаимосвязаны.
- 7. В главе 3 среди рассматриваемых характеристик представлены статистические параметры, которые показывают отклонения предсказываемых данных от фактических, что относится, скорее, к метрикам оценки моделей машинного обучения. В работе не вполне обоснована необходимость применения выбранных параметров объектов и метрик, используемых для оценки качества обучения моделей, к результатам биоимпедансометрии.

Сделанные замечания носят частный характер и не влияют на общую положительную оценку диссертационной работы.

Заключение

Таким образом, ведущая организация федеральное государственное бюджетное образовательное учреждение высшего образования «Тамбовский государственный технический университет» считает, что диссертация Демушкиной К.М. представляет собой законченную, самостоятельно выполненную научно-квалификационную работу, в которой решены задачи обработки цифровых данных электрокардиографии и биоимпедансометрии для систем поддержки принятия решений. Исследование содержит научные результаты и положения, имеющие теоретическое и практическое значение.

Диссертационная работа Демушкиной К.М. на тему «Методики и алгоритмы обработки цифровых данных электрокардиографии и биоимпедансометрии для систем

поддержки принятия решений» соответствует требованиям пп. 9-14 действующего положения «О порядке присуждения ученых степеней», утвержденного Постановлением Правительства Российской Федерации № 842 от 24 сентября 2013 г., предъявляемым к диссертациям на соискание ученой степени кандидата технических наук, а ее автор Демушкина Ксения Михайловна заслуживает присуждения ученой степени кандидата технических наук по специальности 2.3.1. «Системный анализ, управление и обработка информации, статистика» (технические науки).

Диссертационная работа и отзыв были рассмотрены и единогласно одобрены на заседании кафедры «Биомедицинская техника» ФГБОУ ВО «Тамбовский государственный технический университет». Присутствовало 12 человек, из них 4 доктора наук. Протокол №3 от 20 ноября 2025 года.

Фролов Сергей Владимирович.

20.11.2025

Доктор технических наук по специальностям 05.13.07 — Автоматизация технологических процессов и производств, 05.13.16 — Применение вычислительной техники, математического моделирования и математических методов в научных исследованиях.

Сведения об организации:

д.т.н., профессор

ФГБОУ ВО «Тамбовский государственный технический университет», 392000, г. Тамбов, ул. Советская, д. 106/5, помещение 2, тел.: (4752) 63-10-19, официальный сайт: https://tstu.ru e-mail: tstu@admin.tstu.ru.

