ОТЗЫВ

официального оппонента Кузнецова Артёма Анатольевича на диссертацию Гашенко Юлии Валерьевны на тему:

«Волоконно-оптическая информационно-измерительная система для определения плотности пожароопасных жидкостей», представленной на соискание ученой степени кандидата технических наук по специальности 2.2.11 – Информационно-измерительные и управляющие системы (технические науки)

Актуальность темы. Диссертация Гашенко Ю.В. «Волоконнооптическая информационно-измерительная система для определения плотности пожароопасных жидкостей» посвящена решению задач измерения плотности легковоспламеняющихся жидких сред. Целью диссертационного исследования является обеспечение безопасного оперативного контроля плотности пожароопасных жидкостей на объектах нефтегазового комплекса в условиях высокой искро- взрыво- пожароопасности.

Актуальность исследования обусловлена ключевой ролью плотности как показателя качества нефти и нефтепродуктов. Ее оперативный контроль критически важен для управления процессом переработки, обеспечения качества продукции и ведения массового учета. Отсутствие своевременного контроля ведет к снижению эффективности, нарушениям в работе установок, экономическим потерям И повышенным экологическим рискам. Существующие системы непрерывного контроля не нашли широкого применения в нефтяной промышленности из-за недостаточной точности, эксплуатационных ограничений, несоответствия высокотемпературным режимам и проблем с безопасностью в опасных средах. Таким образом, существует проблема отсутствия надежных, безопасных и универсальных средств оперативного контроля плотности для высокотемпературных и взрывопожароопасных процессов. Как инструмент непрерывного контроля плотности используются поплавковые плотномеры, однако их разработка требует решения проблем обеспечения простоты, точности и работы в опасных условиях. Перспективным направлением является использование волоконно-оптических датчиков и систем, обладающих преимуществами надежности, взрывобезопасности и устойчивости к помехам. Вследствие этого актуальной разработки является задача волоконно-оптической информационно-измерительной системы (ВОИИС) ДЛЯ плотности пожароопасных жидкостей на основе поплавкового датчика плотности.

Научная новизна и практическая значимость исследований. В диссертации Гашенко Ю.В. представлены результаты, обладающие научной новиной и имеющие практическую значимость:

- Предложена структура волоконно-оптической информационно-измерительной системы для определения плотности пожароопасных жидкостей с поплавковым датчиком плотности и волоконно-оптическим растровым преобразователем в ее составе, которая предусматривает как режим калибровки, так и режим измерения на основе полученных в результате калибровки данных, а также позволяет учитывать температурные условия технологического процесса и производить приведение измеренных значений плотности к стандартным условиям.
- Разработан алгоритм функционирования волоконно-оптической информационно-измерительной системы для определения плотности жидких сред, обеспечивающий работу в режиме калибровки, который учитывает конструктивные параметры измерительного преобразователя и позволяет определить калибровочные коэффициенты для дальнейшего их применения при измерении плотности.
- Разработан алгоритм функционирования волоконно-оптической информационно-измерительной системы для определения плотности жидких сред, обеспечивающий работу в режиме измерения, который учитывает конструктивные параметры измерительного преобразователя, полученные по результатам проведенной калибровки калибровочные коэффициенты и температурную поправку плотности для приведения результатов измерения к стандартным условиям.
- Предложено техническое решение волоконно-оптической информационно-измерительной системы для определения плотности пожароопасных жидкостей, защищенное патентом РФ, с измерительной частью в виде поплавкового датчика плотности с волоконно-оптическим растровым преобразователем в его составе.

На основе полученных Гашенко Ю.В. теоретических результатов были получены научные результаты, показывающие практическую значимость диссертационного исследования и позволяющие решить следующие задачи:

- анализ существующих способов, датчиков и измерительных систем для определения плотности жидких сред, применяемых на объектах нефтепереработки;
- математическое обоснование физических процессов, происходящих в оптико-механической системе измерительного преобразователя плотности жидких сред, а также распределения светового потока и его модуляции в

открытом оптическом канале измерительного преобразователя с применением растровой решетки;

- определение функциональной зависимости между перемещением поплавка и плотностью жидкой среды, а также преобразование значения перемещения в информационный сигнал для его дальнейшей обработки;
- разработка технического решения волоконно-оптической информационно-измерительной системы для определения плотности пожароопасных жидкостей на основе поплавкового датчика плотности с волоконно-оптическим растровым преобразователем в его составе;
- разработка структуры волоконно-оптической информационноизмерительной системы для определения плотности жидких сред с поплавковым датчиком плотности в ее составе, позволяющей оперативно производить измерение плотности жидких сред в автоматизированном режиме;
- разработка алгоритма функционирования волоконно-оптической информационно-измерительной системы с режимами калибровки и измерения плотности, учитывающего конструктивные параметры 5 измерительного преобразователя, полученные данные калибровки и температурную поправку плотности при преобразовании перемещения поплавка в искомое значение плотности жидкости;
- анализ волоконно-оптической информационно-измерительной системы для оценки оптических потерь и определения основных источников погрешностей и способов их минимизации, реализация и проведение экспериментальных исследований волоконно-оптической информационно-измерительной системы для определения плотности жидких сред в лабораторных условиях с целью подтверждения ее работоспособности и оценки точности.

Обоснованность и достоверность научных положений и выводов. Обоснованность и достоверность полученных результатов обусловлена применением математического аппарата и адекватностью применяемых методов и положений, а также подтвержденными экспериментальными исследованиями фактами и актами внедрения на предприятия профильной направленности, такие как ЗАО «ТМ-Сервис» и ООО «Метрология и Автоматизация» (г. Самара).

Результаты диссертационной работы докладывались и обсуждались на международных и всероссийских конференциях. Основные положения диссертации изложены в 15 печатных работах 4 из которых входят в журналы

из перечня ВАК, 2 патента на полезную модель, 1 свидетельство на программу для ЭВМ.

Рекомендации по использованию результатов диссертации. Результаты диссертационного исследования рекомендуется использовать на нефтегазоперерабатывающих предприятиях.

Краткая характеристика основного содержания диссертации. Диссертация Гашенко Ю.В. состоит из введения, четырех глав, заключения, библиографического списка, приложений.

Во введении обоснована актуальность разработки информационноизмерительных систем измерения плотности взрывоопасных жидкостей, определены цель, задачи и практическая значимость работы.

Проведенный автором в **первой главе** аналитический обзор выявил ключевые недостатки существующих методов измерения плотности: чувствительность к агрессивным средам, перепадам температуры и вязкости, сложность обслуживания и эксплуатации, наличие электрических элементов в зоне измерения. Даже наиболее надежные поплавковые плотномеры часто не адаптированы к высокотемпературным процессам и содержат опасные электрические компоненты.

Во второй главе в качестве решения проблемы безопасного оперативного контроля плотности жидких пожароопасных сред автор предлагает разработку волоконно-оптической информационно-измерительной системы на основе поплавкового датчика плотности. Проведено математическое моделирование сил, действующих на поплавок, а также изучено распределение светового потока в оптическом канале для определения оптимальных параметров системы, учтено влияние дифракции.

Третья глава посвящена разработке структурной схемы волоконнооптической информационно-измерительной системы для определения плотности жидких сред, алгоритмов калибровки и измерения, а также техническому решению датчика плотности с волоконно-оптическим растровым преобразователем в составе информационно-измерительной системы.

В четвертой главе проведен анализ разрабатываемой информационноизмерительной системы и ее энергетический расчет, которые позволили выявить основные источники погрешностей и способы их минимизации, а также суммарные оптические потери. Экспериментальные исследования в диапазоне $20-90^{\circ}$ С подтвердили работоспособность системы, ее взрывобезопасность и соответствие требованиям к точности. В целом диссертация Гашенко Ю.В. является законченным исследованием, представляет решение актуальных задач, объединенных общей целью и подходом, обеспечивающим возможность безопасного непрерывного контроля плотности взрыво- и пожароопасных жидких сред в условиях высокотемпературных технологических процессов нефтегазопереработки и хранения.

Замечания по работе. К содержанию диссертационной работы могут быть сделаны следующие замечания:

- 1. В первой главе не приведены примеры реализации ВОИИС для решения указанной задачи (патентный поиск), а даны лишь общие формулировки, касающиеся преимуществ их использования. Данное обстоятельство не дает понять место предложенного решения среди аналогичных, в которых могут использоваться, например, брэгговские решетки, интерферометры и т.д. Так же на стр. 6 при перечислении отечественных исследователей, занимающихся ВОИИС не представлены руководители ведущих научных школ и организаций.
- 2. Требуется дать пояснения, касающиеся конструкции измерительной штанги и растрового преобразователя и нюансов их работы. Для заявленного шага и диаметра отверстий (8 мкм), диаметра сердцевины оптического волокна (200 мкм) и расстояния между торцом оптического волокна и растра (до 80 мкм) очевидно, что одновременно будут засвечиваться несколько отверстий (т.к. пучок, выходящий из оптического волокна, с учетом расходимости, более чем на порядок превышает диаметр одного отверстия), таким образом становится неясным как происходит «счет» количества прошедших отверстий при движении штанги. Автором декларируется, что оптические датчики устойчивы к вибрации, при этом, на мой взгляд, очевидно, что наличие таких прецизионных отверстий и зазоров не обеспечивает высокую устойчивость к вибрации.
- 3. Замечания к математическим моделям. Общие: отсутствуют исходные данные для моделей и их ограничения, таким образом становятся неясными границы применимости полученных выражений для измерительного преобразования (в т.ч. границы его линейности); недостаточна верификация разработанных математических моделей в специализированных САПР. Частные. В модели поплавка следует дать пояснение, почему векторы сил Fa1 и Fa2 сонаправлены, ведь исходя из конструкции датчика, один из сильфонов сжимается, а второй разжимается, т.е. силы направлены в противоположные стороны, так же не учитывается масса штока-толкателя. Описывая математическую модель распределения интенсивности (см. стр. 55) автор

ссылается на источники [52, 53] которые не являются специализированными изданиями по волоконной оптике. Так же в этой модели используются подходы геометрической оптики, которые не всегда корректны при расчете многомодовых волокон (которые в конечном изделии использует автор), так же автором не учитывается характер модового распределения (спеклструктуры) и его флуктуации при изгибах волокна, которые напрямую влияют на работу системы. Приведенный рисунок распределения (рис. 2.99) так же вызывает сомнение, поэтому требуется его верификация.

- 4. Замечания к некоторым суждениям. Стр. 60: не ясно, чем обусловлен выбор диаметра отверстия; стр. 61: «..часть оптических лучей отсекается..» не приведена оценка; стр. 61: «..оптические лучи...» корректнее говорить о поле; рис. 2.13 не ясны размеры источника излучения и как результаты здесь соотносятся с результатами математического моделирования (и проводилось ли оно вообще); при расчете погрешности не показан учет погрешности измерения температуры; стр. 75: «Калибровка завершена, когда количество проведенных итераций составляет 10 и более...» выбор количества не обоснован.
- 5. По фото прибора (рис. 3.12) имеются сомнения в том, что подводящий кабель действительно оптический. Габариты цилиндра, где, видимо, должны быть размещены подводящие и отводящие оптические волокна, а также штанга-толкатель очень малы, чтобы реализовать там изгиб волокон. Следует дать более детальные пояснения конструкции датчика.
- 6. Отсутствуют номера формул. Следует дать определение термина «растровый преобразователь», которое вводит автор.

Приведенные замечания не снижают значимости полученных результатов и не влияют на общую положительную оценку диссертации Гашенко Ю.В.

Общее заключение. Уровень решаемых задач представляется соответствующим требованиям, предъявляемым к диссертациям на соискание ученой степени кандидата технических наук. Содержание диссертации соответствует паспорту специальности 2.2.11 — Информационно-измерительные и управляющие системы (технические науки).

Диссертация Гашенко Юлии Валерьевны «Волоконно-оптическая информационно-измерительная система ДЛЯ определения плотности пожароопасных жидкостей» является завершенной научноквалификационной которая работой, соответствует критериям, установленным пп. 9-14 «Положения о присуждении ученых степеней», утвержденного постановлением Правительства Российской Федерации от 24 сентября 2013 г. № 842. Диссертант Гашенко Юлия Валерьевна заслуживает присуждения ей ученой степени кандидата технических наук по специальности 2.2.11 — Информационно-измерительные и управляющие системы (технические науки).

Официальный оппонент:
Кузнецов Артем Анатольевич
доктор технических наук, доцент,
заведующий кафедрой радиофотоники и
микроволновых технологий КНИТУ-КАИ

А.А. Кузнецов

«26» Ø9 2025 г

Адрес: 420111, Россия, Республика Татарстан,

г. Казань, ул. К. Маркса, 10, Телефон: 8 919 642 5689 E-mail:AAKuznetsov@kai.ru

Согласен на включение моих персональных данных в аттестационное дело и опубликование их на сайтах организации и $BAKP\Phi$