ОТЗЫВ

официального оппонента Воловача Владимира Ивановича на диссертацию Гашенко Юлии Валерьевны на тему: «Волоконно-оптическая информационно-измерительная система для определения плотности пожароопасных жидкостей», представленной на соискание ученой степени кандидата технических наук по специальности 2.2.11. Информационно-измерительные и управляющие системы (технические науки)

Актуальность темы исследования

В своей «Волоконно-оптическая информационнодиссертации измерительная система для определения плотности пожароопасных жидкостей» Гашенко Ю.В. проблему решает важную безопасного мониторинга плотности легковоспламеняющихся жидкостей на объектах нефтегазовой отрасли.

Актуальность работы продиктована тем, что плотность — это ключевой параметр качества нефтепродуктов. Ее постоянный контроль необходим для управления технологическими процессами, обеспечения стандартов продукции и точного коммерческого учета. Несовершенство существующих методов контроля приводит к снижению эффективности производства, поломкам оборудования и финансовым потерям.

Большинство доступных систем не подходят для работы в экстремальных условиях нефтегазового комплекса из-за недостаточной точности, температурных ограничений и риска возникновения искр и, как следствие, пожароопасных ситуаций.

В качестве решения автор предлагает разработать волоконнооптическую информационно-измерительную систему на базе поплавкового датчика плотности с волоконно-оптическим растровым преобразователем. Данный подход сочетает в себе простоту и точность поплавкового метода с преимуществами волоконной оптики: взрывобезопасностью, надежностью и устойчивостью к электромагнитным помехам.

Анализ содержания диссертации

Диссертационная работа состоит из введения, четырех глав, заключения, библиографического списка, приложений, изложена на 143 страницах машинописного текста, содержит 48 рисунков, 12 таблиц, 4 приложения. Библиографический список содержит 91 наименование.

обоснование Введение содержит актуальности создания информационно-измерительных систем ДЛЯ определения плотности пожароопасных жидкостей, формулировку a также цели, задач И практической ценности исследования.

Первая глава представляет аналитический обзор современных методов измерения плотности, который позволил выявить их существенные недостатки: уязвимость к воздействию агрессивных сред, температурным перепадам и изменению вязкости, а также сложность в эксплуатации и наличие искроопасных электрических компонентов в измерительной среде. Даже наиболее применяемые поплавковые плотномеры часто не рассчитаны на работу при высоких температурах. Несмотря на важность плотности, в существующих информационно-измерительных системах её измерение носит второстепенный характер. Оно осуществляется косвенно с помощью датчиков уровня, что ведет к погрешностям из-за ручных пересчетов. Кроме того, такие системы не рассчитаны на высокие температуры процессов переработки и пригодны в основном для процессов хранения нефти и нефтепродуктов.

Во второй главе предложена разработка волоконно-оптической информационно-измерительной системы на базе поплавкового датчика плотности. Были приведены основные элементы датчика, описан принцип его действия. Приводится математическая интерпретация физических процессов, происходящих в оптико-механической части датчика,

рассматриваются вопросы распространения светового потока в открытом оптическом канале преобразователя с учетом влияния дифракции.

В третьей главе автором разрабатываются структура волоконнооптической информационно-измерительной системы, алгоритмы работы данной системы в режимах калибровки и измерения, а также более детально рассматривается конструкция датчика плотности с волоконно-оптическим растровым преобразователем как элемента информационно-измерительной системы.

Четвертая себя глава включает В энергетический метрологический анализ измерительных каналов системы, определивший основные источники погрещностей и пути их компенсации. Проведенные испытания подтвердили эксплуатационную пригодность волоконнооптической информационно-измерительной системы, соответствие требованиям взрывобезопасности и заявленной точности.

В заключении диссертации приводятся выводы из проведенного исследования.

Достоверность и новизна результатов диссертации

Достоверность результатов диссертации подтверждается их корректным сравнением с имеющимися решениями, проведенными математическими расчетами и анализом полученных результатов, актами, подтверждающими реализацию и внедрение результатов, а также апробацией результатов диссертации на международных и всероссийских конференциях.

Научная новизна диссертации заключается в следующем:

1. Предложена структура волоконно-оптической информационноизмерительной системы для определения плотности пожароопасных жидкостей с поплавковым датчиком плотности и волоконно-оптическим растровым преобразователем в ее составе, которая предусматривает как режим калибровки, так и режим измерения на основе полученных в результате калибровки данных, а также позволяет учитывать температурные условия технологического процесса и производить приведение измеренных значений плотности к стандартным условиям.

- 2. Разработан алгоритм функционирования волоконно-оптической информационно-измерительной системы для определения плотности жидких сред, обеспечивающий работу в режиме калибровки, который учитывает конструктивные параметры измерительного преобразователя и позволяет определить калибровочные коэффициенты для дальнейшего их применения при измерении плотности.
- 3. Разработан алгоритм функционирования волоконно-оптической информационно-измерительной системы для определения плотности жидких сред, обеспечивающий работу в режиме измерения, который учитывает конструктивные параметры измерительного преобразователя, полученные по результатам проведенной калибровки калибровочные коэффициенты и температурную поправку плотности для приведения результатов измерения к стандартным условиям.
- 4. Предложено техническое решение волоконно-оптической информационно-измерительной системы для определения плотности пожароопасных жидкостей, защищенное патентом РФ, с измерительной частью в виде поплавкового датчика плотности с волоконно-оптическим растровым преобразователем в его составе.

Обоснованность научных положений, выводов и рекомендаций, сформулированных подтверждается В диссертации, адекватностью общеизвестностью применяемых методов И положений, также подтвержденными исследованиями фактами. Достоверность результатов работы подтверждается их реализацией, широкой апробацией, а также согласованностью между научными выводами и экспериментальными исследованиями.

Практическая значимость результатов диссертационного исследования может быть подтверждена их использованием в ЗАО «ТМ-Сервис» (г. Самара), ООО «Метрология и Автоматизация» (г. Самара), а также в

учебный процесс кафедры «Автоматизация и управление технологическими процессами» ФГБОУ ВО «Самарский государственный технический университет».

Основные публикации по теме диссертации

По теме диссертации опубликовано 15 печатных работ, 4 из которых входят в журналы из перечня ВАК, 2 патента на полезную модель, 1 свидетельство на программу для ЭВМ.

Соответствие содержания автореферата основным положениям диссертации

Содержание автореферата полностью отражает основные идеи, результаты и выводы диссертации.

Соответствие паспорту специальности 2.2.11. Информационно-измерительные и управляющие системы (технические науки)

Проблемы и задачи, решенные в диссертации, соответствует паспорту рассматриваемой специальности в части следующих направлений исследований:

- п.1. Научное обоснование перспективных информационно-измерительных и управляющих систем, систем их контроля, испытаний и метрологического обеспечения, повышение эффективности существующих систем.
- п.2. Исследование возможностей и путей совершенствования существующих и создания новых элементов структуры и образцов информационно-измерительных и управляющих систем, улучшение их технических, эксплуатационных, экономических и эргономических характеристик, разработка новых принципов построения и технических решений.
- п.3. Математическое, алгоритмическое, информационное, программное и аппаратное обеспечение информационно-измерительных и управляющих систем.

Замечания по диссертационной работе

- 1. В работе рассмотрены дифракционные явления и представлено дифракционное уравнение. Не совсем ясно, почему автором выбран именно интеграл Рэлея-Зоммерфельда, а не дифракционный интеграл Кирхгофа?
- 2. Автором предусмотрена компенсация колебаний поплавка с помощью сильфонов. Достаточно ли данного решения при использовании датчика в промышленных условиях? Также автором не были рассмотрены вопросы фиксации движения поплавка строго в вертикальном положении.
- 3. Недостаточно обоснована гипотеза о линейности модели перемещения поплавка. Всегда ли будет линейным выражение для определения зависимости плотности от перемещения поплавка?
- 4. Автор предлагает использовать электронный нониус в составе информационно-измерительной системы для определения значения перемещения растровой решетки с точностью до 1 мкм. Настолько ли критична такая точность?

Указанные замечания не являются принципиальными и существенно не влияют на общую положительную оценку представленного исследования.

Заключение

Таким образом, представленная диссертация содержит обоснованные и достоверные новые научные результаты, с помощью которых решена научная проблема, имеющая важное значение в области разработки информационно-измерительных систем для контроля параметров пожароопасных жидкостей.

Диссертация тему «Волоконно-оптическая информационнона система измерительная для определения плотности пожароопасных жидкостей» удовлетворяет всем требованиям ВАК, предъявляемым к кандидатским диссертациям, критериям, установленным И «Положения присуждении ученых степеней», утвержденного постановлением Правительства Российской Федерации от 24 сентября 2013 г. № 842, соответствует паспорту заявленной специальности, а ее автор, Гашенко Юлия Валерьевна, заслуживает присуждение ей степени кандидата технических наук по специальности 2.2.11. Информационно-измерительные и управляющие системы (технические науки).

Официальный оппонент

доктор технических наук, доцент,

ФГБОУ ВО «Поволжский государственный университет сервиса» (г. Тольятти),

директор Высшей школы передовых производственных технологий (научная специальность 05.12.04 — Радиотехника, в том числе системы и устройства телевидения)

В.И. Воловач

Контактные данные

Федеральные государственное бюджетное образовательное учреждение высшего образования «Поволжский государственный университет сервиса», Высшая школа передовых производственных технологий. 445017, г. Тольятти, ул. Гагарина, д. 4. Тел. (8482)48-65-70, e-mail: volovach.vi@mail.ru

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Поволжский государственный университет сервиса» (ФГБОУ ВО «ПВГУС»)

 ® 445017 г. Тольятти, ул. Гагарина, д. 4
 ⊕ www.tolgas.ru

 % Тел.: (8482) 26-35-38
 ы office@tolgas.ru

ОКПО 05040659 ОГРН 1036300992067 ИНН 6323068825

24.09.2025 Nº 125

СПРАВКА

Выдана Воловачу Владимиру Ивановичу

в том, что он (а) работает в федеральном государственном бюджетном образовательном учреждении высшего образования «Поволжский государственный университет сервиса» с 03.08.1987 г. (Приказ N° 715/3 от 12.10.1987 г.) по настоящее время,

в должности директора Высшей школы передовых производственных технологий с 09.09.2025 г. (Приказ № 489 /10 от 09.09.2025 г.)

Справка выдана для предъявления по месту требования.

Начальник ОРП

Н.В.Петрова